Projects
There are 16 results.
AQUASENSE - Research and Validation of a Prototype for Simultaneous LWC/IWC Detection in Icing Wind Tunnels
Within the AquaSense framework, a method for the simultaneous detection of both the aggregation state and concentration of water in flowing media, specifically for application in high temporal resolution icing wind tunnels, will be investigated for the first time in order to test, optimise and certify aircraft systems under defined icing conditions. A photoacoustic spectroscopy based prototype will be developed and tested under different operating conditions in the RTA Icing Wind Tunnel and the FHJ Icing Wind Tunnel.
AntiIce - Anti-icing/De-icing Systems to Improve Aircraft Performance and Safety
The aim of the Anti-Ice project was the production of new and innovative materials for aircraft surface coating to prevent icing. Furthermore, micromechanical (piezo) actuators for active ice removal have been developed.
Aviation Icing Tests IV - Cloud Generation for Realistic Icing Tests on Aircraft Components, With and Without De-Icing or Anti-Icing Facilities
this research project will examine consequent research topics with a focus on increasing the LWC (Liquid Water Content) for Appendix C as well as the distribution and reduction of the LWC for Supercooled Large Drops (SLD). It is building on research projects Aviation Icing Tests, Aviation Icing Tests II and Aviation Icing Tests III that have already been carried out.
BISANCE - BIphasic System integrated in the Airframe of a NaCElle
The project intends to test in icing wind tunnel (IWT) one demonstrator of engine air intake integrated in a nacelle and equipped with an innovative biphasic heat transport system for regenerating the energy from the oil of the engine. The objective, by testing the technology in a representative environment, is to reach TRL5. At the end of the project the technology will be able to be further developed towards TRL6 to 9 with the final aim to be transferred to the aeronautic value chain.
DEMONA - Demonstration of UAS Integration for VLL Airspace Operations
Within the DEMONA framework, the integration of an unmanned aerial vehicle into civil airspace and therein used flight guidance, which is based on the Galileo satellite navigation system, will be carried out for the first time in Austria. For this purpose, subsystems for navigation receiver, navigation data fusion, airspace demarcation, data link and collision prevention are to be integrated into a small UAS, and flight testing based on instrument procedures is to be carried out.
HEAT - Heating Paint Based De-icing System for Drive Components and Aircraft Wings
The aim of the HEAT project was to develop a special heating paint as the basis for a lightweight, simple and flexible de-icing system for aircraft. This de-icing system, which is intended for both anti-icing and de-icing procedures, is intended to increase the safety of the aircraft through high damage tolerance and, at the same time, to be particularly energy-saving due to the lower system weight and efficient energy conversion.
HEMEP - Hybrid Electric Multi Engine Plane
The consortium partners in the HEMEP project aim to play a pioneering role in the field of aviation in electric propulsion systems, and thus enable the participating companies to become technology leaders for the future. The multi-engine aircraft with a hybrid electric propulsion system project will serve to further develop the basics of calculation methods in different areas for electric flying.
ICE GENESIS - Creating the Next Generation of 3D Simulation Means for Icing
The top level objective of the ICE GENESIS project is to provide the European aeronautical industry with a validated new generation of 3D icing engineering tools (numerical simulation and test capabilities), addressing App C, O and snow conditions, for safe, efficient and cost effective design and certification of future aircraft and rotorcraft.
Ice Grid - Investigation of Ice Formation on Protection Grids in Aircraft Air-Conditioning Systems
The IceGrid project examined protection grids in the air conditioning systems of passenger aircraft and at the interface to mobile climate modules on the ground for icing and de-icing. The methods used included both experimental testing in the icing wind tunnel and numerical simulations.
IceDrip - Aircraft Anti-icing and De-icing through Assemblies of Conducting Varnish and Functional Coatings
In the project IceDrip the rather promising concept of a discontinuous, electro-thermal de-icer is being investigated. The main aim of the present project is to significantly increase the already existing energetic advantages of the discontinuous de-icer by means of surface-active coatings, in order to achieve a performance range which would make the system suitable for general aviation aircraft, as well as smaller aircraft, which are equipped as large aircraft.
I³PS - Integration of Innovative Ice Protection Systems
The project goal is to economically remove ice accreting on aircraft structure critical parts and thus increase reliability and mass saving on the global function. By comparison with the present existing solutions which are based on active pneumatic and electro-thermal means the targeted solutions will enable electrical power consumption, cost and mass reductions and ease the overall integration process.
MIXVAL - Mixer Simulation and Validation
In passenger aircraft, the mixing and distribution of humid airflow from the cabin and engines into the cockpit and passenger cabin, as well as electronic components, takes place at a central location of the air conditioning system, the mixer. So far, the flow and heat transfer processes and the ice formation and accretion cannot be calculated with sufficient accuracy. Therefore, the aim of this project is to develop a method for simulating the physical processes in the mixer.
TWID - Heating-Paint Sensor Based Wing Ice Detector
In the scope of the TWID project, a method for reliable detection of ice on wing surfaces and other relevant structures on an aircraft is to be developed, examined and validated in the course of various tests on the small-scale and full-scale models in the icing wind tunnel. Ice detection combined with the de-icing method, which is already in development, results in a completely self-sufficient de-icing system, which independently identifies and reliably removes ice on the wings.
VertSLD - Prospecting for the Construction of a Vertical Icing Wind Tunnel for Experimental Simulation of Icing by Supercooled Large Droplets
The exploratory project VertSLD investigates both the physical feasibility and economic viability of an icing wind tunnel concept which avoids many of the difficulties that arise in existing icing wind tunnels when the size of the water droplets exceeds a few hundred microns. in this new concept the "flight path" of the drops within which they are supercooled is arranged vertically and not horizontally.
eSAFE - Emergency Safe Return for CS23 Aircraft
The aim of the project is the development of an automatic emergency flight guidance, including emergency landing for the EASA CS23 category aircraft. In case of sudden in-flight pilot incapacitation or technical problems, after activating the emergency button on board, an airfield with an approach route taking into account dynamic air traffic and weather data should be determined.
eWING_DE-ICER - Development of an Energy-Efficient Electrothermal De-icing System for Wing Leading Edges in Aviation
Within the scope of the eWING_DE-ICER project, a method for developing energy-optimised de-icing systems for wing leading edges, based on a thermoelectric heating system, is to be developed. In addition to the development of forecasting models for the optimal design of all components involved, different prototypes are to be set up as in the model, as well as in full-scale, and tested in various icing wind tunnels.