Projects
There are 12 results.
AAA4ATM - Analysis of Available Airspace for ATM
The goal of the project is the development of an analysis/forecast system for the prediction of available airspace within the next 6 hours based on the current distribution of convective weather phenomena that are obstructive to air traffic. To solve this issue, computer vision algorithms for object detection, feature extraction, tracking and extrapolation, as well as down/upsampling strategies in meteorological image processing and forecaster intervention are used.
AQUASENSE - Research and Validation of a Prototype for Simultaneous LWC/IWC Detection in Icing Wind Tunnels
Within the AquaSense framework, a method for the simultaneous detection of both the aggregation state and concentration of water in flowing media, specifically for application in high temporal resolution icing wind tunnels, will be investigated for the first time in order to test, optimise and certify aircraft systems under defined icing conditions. A photoacoustic spectroscopy based prototype will be developed and tested under different operating conditions in the RTA Icing Wind Tunnel and the FHJ Icing Wind Tunnel.
DEMONA - Demonstration of UAS Integration for VLL Airspace Operations
Within the DEMONA framework, the integration of an unmanned aerial vehicle into civil airspace and therein used flight guidance, which is based on the Galileo satellite navigation system, will be carried out for the first time in Austria. For this purpose, subsystems for navigation receiver, navigation data fusion, airspace demarcation, data link and collision prevention are to be integrated into a small UAS, and flight testing based on instrument procedures is to be carried out.
DIBMETSAT - Digital Image Processing Supported Meteorology Services for Air Traffic Management
Air traffic controllers face the challenge of dealing with a flood of information. An essential source of information here are images and measurements of current weather conditions. Providing automated, higher-level messages from weather radar and satellite images, combining them and generating new measurements for an improved visibility estimation should provide substantial support.
DIBMETSAT-3D - 3D Based Digital Image Processing for Met-Services for Air Traffic Management
Digital image processing analyses, supplements and extracts information from meteorology and subsequently supports its task with regard to Air Traffic Management (ATM). It is based on the findings of the 2D image analysis in meteorology as these are extended to 3D image processing algorithms. Additionally, this requires that not only the 2D-maximum projected weather radar image series are used as the starting point, but also that the volumetric data in combination with digital terrain models are used as a data source.
FUSEMET - Multi-Sensor Fusion for Aviation Meteorology Services
The project aim - "big picture of airport weather” - is based on the integration of all sensor data available at an airport with the results of image processing modules in the collateral projects DIBMETSAT and DIBMETSAT-3D. With the help of defined use-cases, both the development and implementation of multi-sensor fusion concepts and the analysis of available data time series are implemented. Both cases achieve added value through the combination and integration of multiple types of information compared to single site measurements.
FUSEMET-APP - AApplication of Multi-Sensor Fusion for Automatic Observation of Aviation Meteorology
FUSEMET APP will focus on optimising present automated weather observation modules, developing new observation technologies, as well as their adaptation to ATM specifications and procedures. The automated aviation weather observation provides significant support to observers in challenging weather conditions and, furthermore, serves as an autonomous weather observation system for low air traffic during the 7x24 operation.
MET4LOWW - MET Potentials for Arrival and Departure Management
The objective of the MET4LOWW project is to derive ATM procedures for integrating partly probabilistic wind and weather information into arrival and departure management. Wind-fields and weather-objects are implemented in University of Salzburg’s ATM/ATC simulator, and associated avoidance and adaption strategies are developed. Various traffic and weather scenarios are analysed using fast-time-simulation and evaluated based on ATM performance figures for safety, capacity, cost-efficiency and environment. Based on these results the optimal ATM-procedures and meteorological information will be derived, e.g. time-based separation. The resulting potential improvements for arrival and departure management are validated by real-time simulation.
MIXVAL - Mixer Simulation and Validation
In passenger aircraft, the mixing and distribution of humid airflow from the cabin and engines into the cockpit and passenger cabin, as well as electronic components, takes place at a central location of the air conditioning system, the mixer. So far, the flow and heat transfer processes and the ice formation and accretion cannot be calculated with sufficient accuracy. Therefore, the aim of this project is to develop a method for simulating the physical processes in the mixer.
PROB4LOWW - Probabilistic MET Information for Capacity Optimisation in Arrival and Departure Management
In the proposed exploratory project, a concept for the integration of probabilistic meteorological information in arrival and departure management for capacity optimisation shall be devised. Flight planning and operation guidelines as well as detailed simulations of air traffic will be used to obtained a cost-loss ratio, which provides the basis to determine the optimal probability thresholds required to set arrival and departure rates at the occurrence of individual weather events.
VertSLD - Prospecting for the Construction of a Vertical Icing Wind Tunnel for Experimental Simulation of Icing by Supercooled Large Droplets
The exploratory project VertSLD investigates both the physical feasibility and economic viability of an icing wind tunnel concept which avoids many of the difficulties that arise in existing icing wind tunnels when the size of the water droplets exceeds a few hundred microns. in this new concept the "flight path" of the drops within which they are supercooled is arranged vertically and not horizontally.
eSAFE - Emergency Safe Return for CS23 Aircraft
The aim of the project is the development of an automatic emergency flight guidance, including emergency landing for the EASA CS23 category aircraft. In case of sudden in-flight pilot incapacitation or technical problems, after activating the emergency button on board, an airfield with an approach route taking into account dynamic air traffic and weather data should be determined.