Projects
There are 5 results.
Evolution#4 - Development of a fully automated airplane manufacturing technology and implementation of IoT
In Evolution#4 an approach for the 4th industrial revolution will be addressed by bringing the production of aeronautical structures to a fully automated RTM process. In an holistic approach with leading specialists from Airbus the Austrian consortium will develop intelligent, sensor-based and quality driven production technology and prepare for coming project on the example of the A320 vertical tail plane.
IceDrip - Aircraft Anti-icing and De-icing through Assemblies of Conducting Varnish and Functional Coatings
In the project IceDrip the rather promising concept of a discontinuous, electro-thermal de-icer is being investigated. The main aim of the present project is to significantly increase the already existing energetic advantages of the discontinuous de-icer by means of surface-active coatings, in order to achieve a performance range which would make the system suitable for general aviation aircraft, as well as smaller aircraft, which are equipped as large aircraft.
I³PS - Integration of Innovative Ice Protection Systems
The project goal is to economically remove ice accreting on aircraft structure critical parts and thus increase reliability and mass saving on the global function. By comparison with the present existing solutions which are based on active pneumatic and electro-thermal means the targeted solutions will enable electrical power consumption, cost and mass reductions and ease the overall integration process.
TWID - Heating-Paint Sensor Based Wing Ice Detector
In the scope of the TWID project, a method for reliable detection of ice on wing surfaces and other relevant structures on an aircraft is to be developed, examined and validated in the course of various tests on the small-scale and full-scale models in the icing wind tunnel. Ice detection combined with the de-icing method, which is already in development, results in a completely self-sufficient de-icing system, which independently identifies and reliably removes ice on the wings.
eWING_DE-ICER - Development of an Energy-Efficient Electrothermal De-icing System for Wing Leading Edges in Aviation
Within the scope of the eWING_DE-ICER project, a method for developing energy-optimised de-icing systems for wing leading edges, based on a thermoelectric heating system, is to be developed. In addition to the development of forecasting models for the optimal design of all components involved, different prototypes are to be set up as in the model, as well as in full-scale, and tested in various icing wind tunnels.