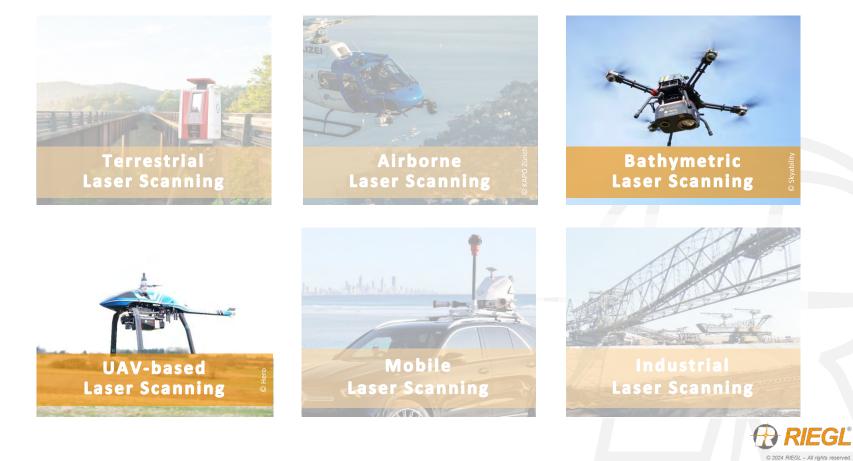
UAV-basiertes 3D Laserscanning

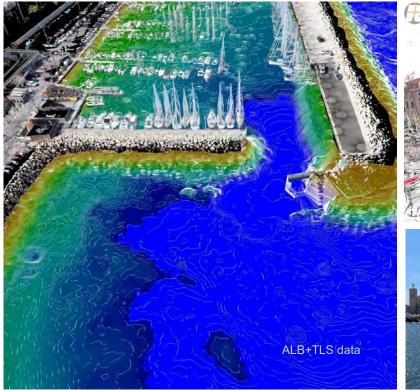


Philipp Amon


Manager ULS Business Division, RIEGL LMS GmbH

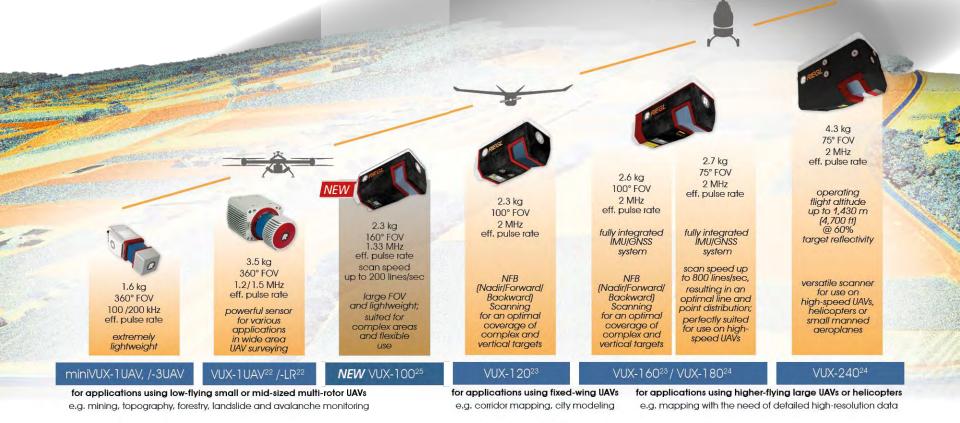
23.01.2025, Drohnenforum 2025

UAV-based Laser Scanning | *UAV-basiertes Laserscanning*



Bathymetric Laser Scanning | *Bathymetrisches Laserscanning*

Complementary data acquisition



Smooth fusion of LiDAR datasets from static (TLS) and airborne (ALB) acquisition campains

RIEGL UAV-based Laser Scanning | UAV-basiertes Laserscanning

Which UAVs for which scanner? | Welche UAVs für welchen Scanner?

compact design
 small to medium sized areas

 low flight speed
 visibility to the pilot

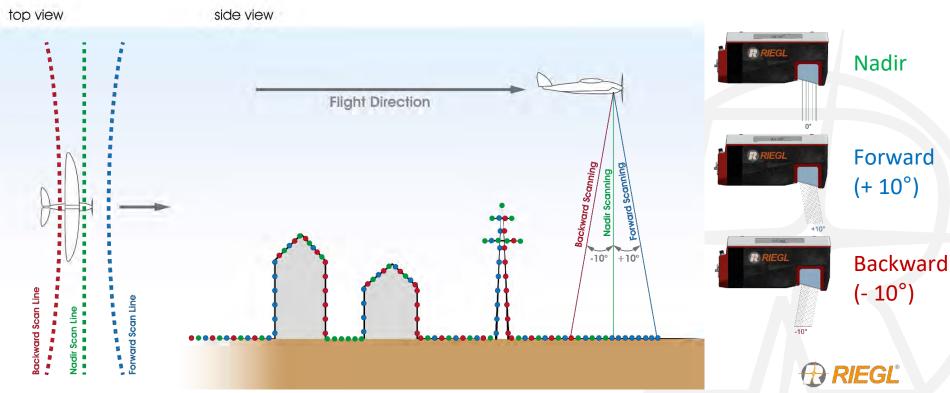
miniVUX Series VUX-1 Series VUX-100²⁵ / VUX-120²³ / VUX-160²³

- aerodynamic design
- large areas or corridors
 - high flight speed
- usually no visibility to the pilot

VUX-120²³ VUX-160²³ VUX-180²⁴

© 2024 RIEGL – All rights reserved

UAV Integration Examples | *UAV Integrationsbeispiele*



VTOL Integration Examples | *VTOL Integrationsbeispiele*

© 2024 RIEGL - All rights reserved.

RIEGL VUX-120²³ / VUX-160²³ NFB Scanning for Complete Coverage

NEW RIEGL RiLOC-E²⁵ / RiLOC-F Location and Orientation Component

RIEGL's IMU/GNSS solution for VUX-series laser scanners

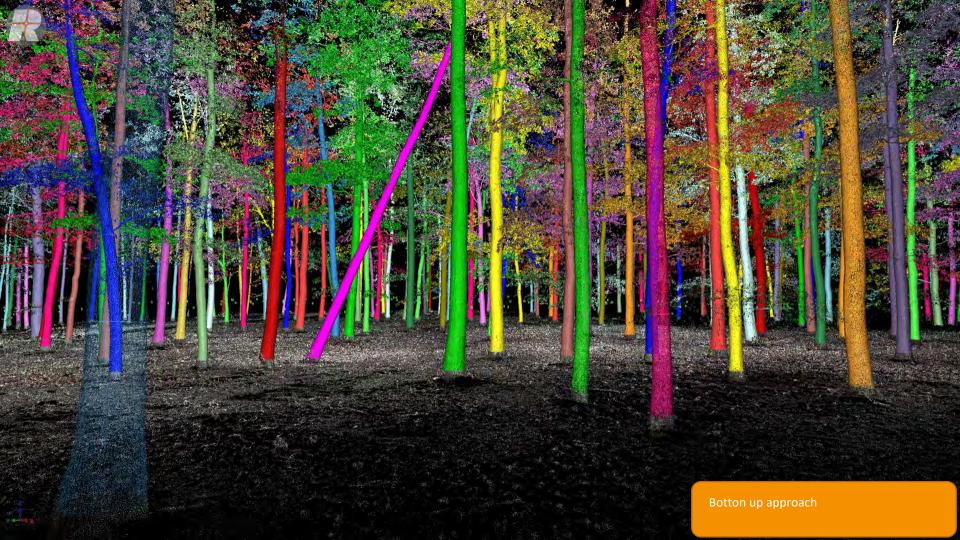
	RiLOC-E ²⁵	RiLOC-F		
Roll/Pitch [deg] (GPS, IMU post processed accuracies)	0.010 °	0.008 °		
Yaw [deg] (GPS, IMU post processed accuracies)	0.020 °	0.015 °		
Performance specifications [m] (position, post-processed)	0.02 - 0.04 m	0.02 - 0.03 m		
IMU sampling rates	up to more than 700 Hz	up to more than 700 Hz		
IMU acceleration range	±8 g, full scale	±8 g, full scale		
IMU angular range	± 300°/sec	± 300°/sec		
GNSS system	L1/L2, GPS, GLONASS, Galileo and BeiDou	multi-constellation s (GPS, GLONASS, Galileo and BeiDou) up to triple-frequency		


Typische ULS-Anwendungsbeispiele

LiDAR Vegetation Penetration

Vegetation Points

1. Stem extraction	2. Tree segme	-	Readout and Controls	
Slice Height:	1.300	m	Note: Shift + Click a tree i Tree ID:	n the 3D vie
Slice Thickness:	0.100		Circle Completeness:	n.v
		m	Goodness Of Fit:	n.v
Min. Reflectance:	-7	dB	Points On Circle:	n.v
Max. Deviation:	10		Diameter Breast Height:	n.v
Search Radius:	0.050		Tree Height:	n.v
		m	Crown Diameter:	n.v
Min. Point Count:	30		Crown Area:	n.v
Min. Compactness: 60		%	Select Points	
Circle Fit Tolerance:	5.000	%		
Stem Diameter Range	e:		Highlight Color:	
0.200 -	0.600	m	Fuchsia	Ŷ
Extract 1	ree Stems			
Lock Sel. Stems	Unlock Sel.	Stems	Reset Stems and Segme	ntation
Delete Sel	ected Stems		Restore Defaults	


Circle Completeness Goodness Of Fit Points On Circle

1

height

Results

173

119 118 117

16

17

x	Y	z	pt_idx	tree_id	1	ree_height cir	cle_complere	wn_area cro	wn_diam dbh	go	odness_ofpts	on_circlislic	e_height:
	24,07	-114,48	-2.11	0	21	18.56	44,44	0,83	1.63	0.11	80.39	48.57	1.3
	17.32	-107.21	-2.04	1	2	18,34	19,44	1.32	2.6	0,15	97.67	54.05	1.3
	12,66	-101.69	-2	2	3	17.74	55,56	2,89	3.76	0,15	100	66.67	1.3
	17,01	-102.15	-1.92	3	1	18.07	47.22	2,03	3.87	0,13	100	72.58	1.3
	13.51	-95,89	-1,84	-4	36	22.96	69.44	24.54	9,35	0,45	100	57,34	1.3
	19.03	-98.23	-1.69	5	5	17.59	-44,44	2.35	3.55	0,11	97.4	55,56	1.3
	22.78	-109,87	-1.96	6	-4	17.55	55,56	0.95	1.96	0,15	98,73	76,47	1.3
	21.8	-108,15	-1.95	7	6	16.35	50	1.78	1.84	0,11	100	46,34	1.3
	25.5	-110,98	-1.99	8	7	19.37	47.22	1.32	2.59	0,13	96.43	60	1.3
	22.22	-105.56	-1,81	9	11	20.57	52.78	3,28	3.23	0,13	98.68	62.71	1.3
	23,73	-105.8	-1,83	10	10	18.58	58,33	1.56	2.89	0,15	99	68.12	1.3
	23.67	-104.56	-1.59	11	13	17.53	58.33	5.8	4.32	0,19	97.99	81.18	1.3
	25	-105.05	-1.75	12	8	18,47	58.33	2.06	2.68	0,15	98.82	97.83	1.3
	29,27	-110.59	-1.82	13	9	17.82	50	1.87	3.32	0,13	100	77.05	1.3
	25,08	-100.49	-1.65	14	12	18.54	61,11	4,37	4.6	0,15	95,8	60.98	1.3
	32,37	-100.23	-1.35	15	33	21.92	58.33	83,94	14.63	0,51	100	51.32	1.3
	-46,22	-29.75	-2.35	16	14	16.22	36,11	3,71	4,39	0,15	100	62.5	1.3
	-38,32	-36.41	-2.35	17	15	14.01	52.78	4,82	4.57	0,13	100	60	1.3
	0.02	-83.91	-1.95	18	16	14,86	52.78	2.88	3.89	0,11	100	75	1.3
	0.31	-83.67	-1.92	19	20	16.93	63,89	2,41	2.86	0,13	98,53	60,83	1.3
	0.09	-83.29	-1.95	20	18	15,32	55,56	4.3	3.93	0.11	97,17	61.11	1.3
	3,01	-75.98	-1.57	21	89	23,89	52.78	104.7	14.28	0.79	87,16	54,08	1.3
	-7,83	-65.3	-1.71	22	78	24.02	83.33	95.49	13.6	0,55	100	55,75	1.3
	2,02	-67,14	-1,46	23	81	22.47	77.78	58.57	10.5	0.47	100	84,98	1.3
	4,18	-91.72	-2.02	24	42	22,54	36.11	9,62	7,93	0.37	100	31.17	1.3
	6.02	-92.63	-2	25	19	10.76	44,44	7,54	6.02	0.11	100	56.1	1.3
	13.78	-89.6	-1.71	26	65	24.06	83.33	64,41	13.02	0.51	100	73.76	1.3

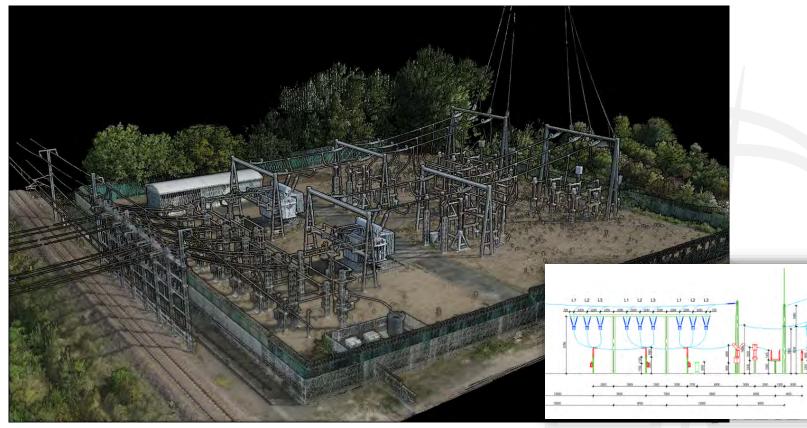
- Exact georeferenced location of each individual tree
- Unique tree ID
- Tree height
- Crown area
- Crown diameter
- DBH

180

.13

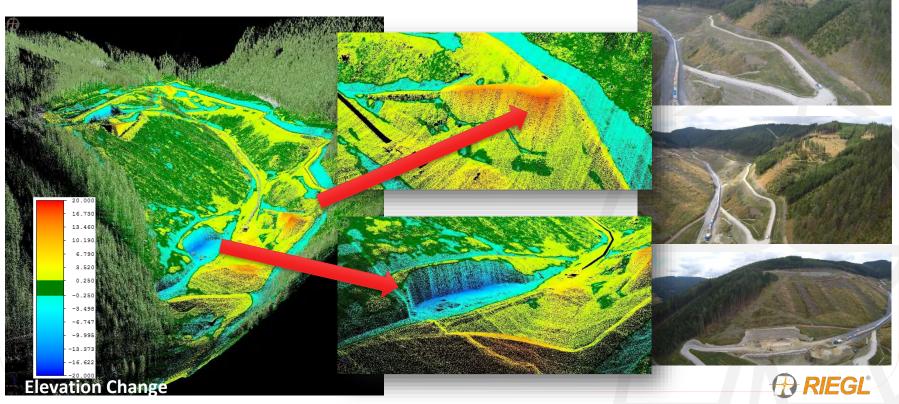
Addititional:

Each individual tree can be exported as a seperate pointcloud for further analysis



Stromleitungsbefliegung / Trassenmonitoring

Umspannwerke



Graphics: OEBB

© 2023 RIEGL Laser Measurement Systems GmbH - All rights reserved.

© 2023 RIEGL Laser Measurement Systems GmbH - All rights reserved.

Danke für Ihre Aufmerksamkeit

Philipp Amon, RIEGL | pamon@riegl.com

Copyright REGL Laser Measurement Systems GmbH @ 2020 – All rights reserved. Use of this presentation other than for personal purposes requires REGL's written consent. The presentation is compiled with care. However, errors cannot be fully excluded and atternations might be necessary.

Innovation in 3D