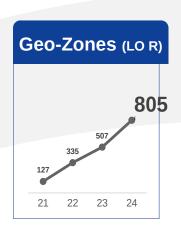
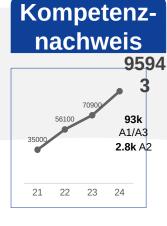


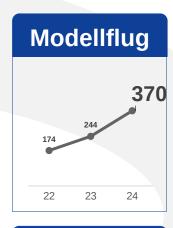
Überblick und Entwicklungen

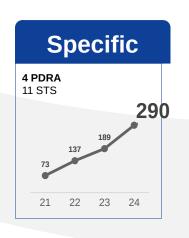
Drohnenforum 2025

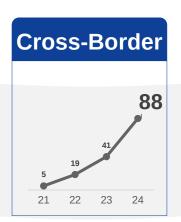

23.01.2025

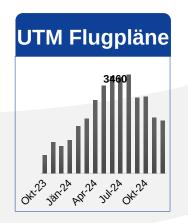

Drone Competence Center Austro Control

Daten und Zahlen Update









UTM

Benutzer im

System: **46568**

Betreiber im

System: 29845

Interne Datenabfrage Stichtag 31.12.2024

UAS Anwendungsfälle - Betriebskategorien

OPEN

STS

SPECIFIC

CERTIFIED

Foto / Film

Inspektion

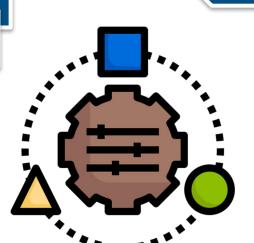
Vermessung

Einsatzorganisationen

Agrar

Drohnenshows

Entwicklung / Erprobungen



Überblick Änderungen SORA 2.5

Präsentation der Unterlag en

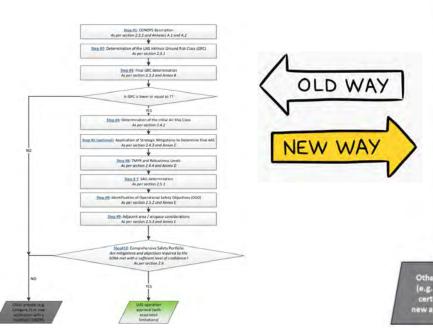
- Annex A

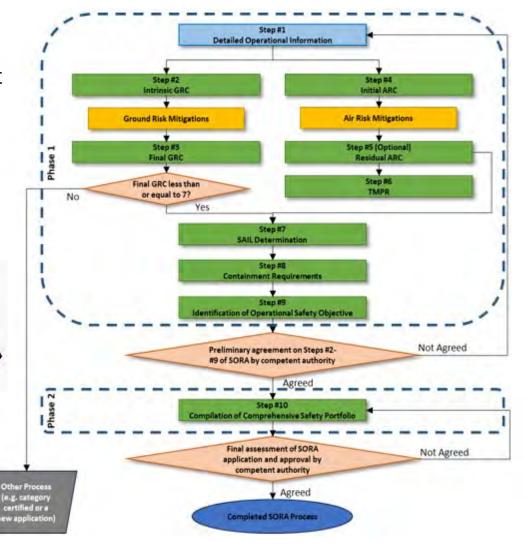
Bodenrisiko

- Quantifizierung der Evaluierung
- Bevölkerungsdaten
- Neue Tabellen
- Neue Mitigationsmaßnahmen

Strukturierung

- SORA-Prozess
- Operational Safety Objectives


Eingrenzung (Containment)


- Einteilung in Low/Medium/High
- Mindestens 5 km

SORA Flowchart

- * Grundgedanke von 10 Schritten bleibt gleich
- * GRC und ARC werden parallel erarbeitet
- * Ersten 7 Schritte bleiben gleich, Containment als Schritt 8 eingearbeitet
- * Einführung von 2 Phasen

SORA-Prozess

* Schnittstelle mit der zuständigen Behörde

Die 10 Schritte von SORA:

- 1. Documentation of the proposed operation(s)
- 2. Determination of the intrinsic Ground Risk Class (iGRC)
- 3. Determination of the final Ground Risk Class (GRC)
- 4. Determination of the initial air risk class (iARC)
- 5. Application of strategic mitigations to determine residual ARC (optional)
- 6. Tactical Mitigation Performance Requirements (TMPR) and robustness levels
- 7. Safety Assurance and Integrity Levels (SAIL)
- 8. Determination of Containment requirements
- 9. Identification of Operational Safety Objectives (OSO)
- 10. Comprehensive Safety Portfolio (CSP)

Phase

Phase 1

Schritt 1-9
Ableitung aller Anforderungen

Schritt 10 Erfüllung aller Anforderungen

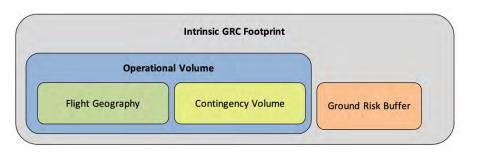
Bodenrisiko

*Die iGRC wird durch die <u>Abmessungen</u> der UA, die <u>Höchstgeschwindigkeit</u> und die <u>maximale Bevölkerungsdichte</u> innerhalb der vorgesehenen iGRC-

Fläche bestimmt.

- ** kinetische Energie NEU: Höchstgeschwindigkeit
- <sup>
 ★</sup> Unterscheidung zwischen

 VLOS/BVLOS
- * Reduktion der GRC für ein kontrolliertes Bodengebiet


Intrinsic UAS Ground Risk Class						
Maximum UA dimension	characteristic	1m / approx. 3ft	3m / approx. 10ft	8m / approx. 25ft	20m / approx. 65ft	40m / approx. 130ft
Maximum speed		25 m/s	35 m/s	75 m/s	120 m/s	200 m/s
Maximum iGRC population density (people/km²)	Controlled Ground Area	1	1	2	3	3
	< 5	2	3	4	5	6
	< 50	3	4	5	6	7
	< 500	4	5	6	7	8
	< 5,000	5	6	7	8	9
	< 50,000	6	7	8	9	10
	> 50,000	7	8	Not part of SORA		

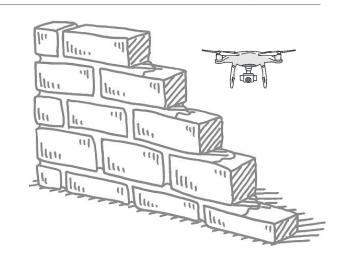
- *Eine weitere Zeile für Gebiete, die nicht kontrolliert sind, aber in denen sich Menschen aufhalten können, z.B. Wälder, Gebirge, große landwirtschaftliche Parzellen
- *Zwei weitere Spalten für UAS über 20 m bzw. 40 m wurden eingeführt

Bodenrisiko - Fußabdruck

* Für die Bestimmung der Bevölkerungsdichte wird der Fußabdruck der UAS-Operation betrachtet.

*Der iGRC-Fußabdruck umfasst die <u>Flight</u> <u>Geography</u>, das <u>Contingency Volume</u> und den <u>Ground Risk Buffer</u>.

* Der iGRC-Fußabdruck kann Segmente mit unterschiedlicher Bevölkerungsdichte umfassen - die <u>höchste Dichte</u> sollte bei der Bestimmung der iGRC verwendet werden.



- *Die Bestimmung der Bevölkerungsdichte sollte anhand von Daten oder Karten mit einer für das Vorhaben geeigneten Rastergröße erfolgen.
- * Für die iGRC können die Bevölkerungsdaten herangezogen werden, dennoch ist eine Evaluierung durchzuführen, wie viele unbeteiligte Personen ("*actual people at risk*") sich tatsächlich im Gebiet befinden.

Eingrenzung / Containment

- *Betrachtung des <u>angrenzenden Bodengebiets</u>; angrenzender Luftraum wird vernachlässigt
- ** <u>Differenz</u> zwischen der endgültigen Bodenrisikoklasse (fGRC) im Betriebsvolumen plus Bodenrisikopuffer und im angrenzenden Gebiet

- * Die Berechnung des angrenzenden Gebiets basiert auf einer 3-minütigen (Aus)Flugzeit mit Höchstgeschwindigkeit, beträgt jedoch <u>mindestens 5 km</u>._
 - → durchschnittliche Bevölkerungsdichte
- * Drei mögliche Robustheitsstufen jeweils mit einer Reihe von Sicherheitsanforderungen: **niedrig**, **mittel** und **hoch**

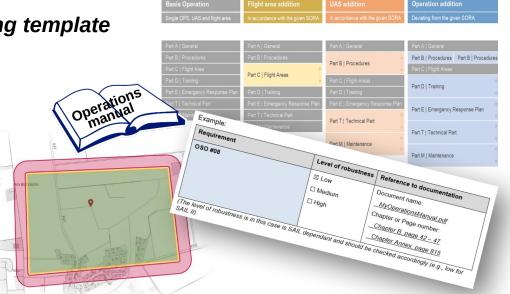
3 m UA (< 35 m/s) Shelter not applicable for the UA in the adjacent area					
Average Population density allowed	No Upper Limit	< 50,000 ppl/km ²	< 5,000 ppl/km ²	< 500 ppl/km ²	
Outdoor Assemblies allowed within 1km of the OPS volume	> 400k	Assemblies of 40k to 400k	Assemblies < 40k people		
SAIL					
1 & 11	Out of scope	High	Medium	Low	
III	Out of scope	Medium	Low	Low	
IV	Medium	Low	Low	Low	
V & VI	Low	Low	Low	Low	

Dokumentation gemäß Annex A

Guidelines on collecting and presenting system and operation information for a specific UAS operation

Annex A enthält eine Reihe von Vorlagen und Anleitungen, die den Antragsteller:innen bei der Sammlung und Vorlage von Informationen zur Unterstützung ihrer Anträge helfen sollen:

A.1 Key Principles for completing the application documents in the 'specific'


Category

A.2 SORA Risk Assessment writing template

A.3 Operations Manual Structure

A.4 Compliance Matrix

A.5 How to present a flight area

Anwendungsfälle für SAIL III

VLOS/BVLOS Betrieb über besiedelte Gebiete:

- Inspektion und Vermessung
- Transport von Gütern
- Forschung und Entwicklung

SAIL III: Final GRC = 4 Final ARC-a / ARC-b

	Intrinsic UAS gr	ound risk class		
Max UAS characteristics dimension	1 m / approx. 3 ft	3 m / approx. 10 ft	8 m / approx. 25 ft	>8 m / approx. 25 ft
Typical kinetic energy expected	< 700 J (approx. 529 ft lb)	< 34 kJ (approx. 25 000 ft lb)	< 1 084 kJ (approx. 800 000 ft lb)	> 1 084 kJ (approx. 800 000 ft lb)
Operational scenarios				
VLOS/BVLOS over a controlled ground area ³	1	2	3	4
VLOS over a sparsely populated area	2	3	4	5
BVLOS over a sparsely populated area	3	4	5	6
VLOS over a populated area	4	5	6	8
BVLOS over a populated area	5	6	8	10
VLOS over an assembly of people	7			
BVLOS over an assembly of people	8			

SAIL determination					
	Residual ARC				
Final GRC	a	b	С	d	
≤2	1	II	IV	VI	
3	II	II	IV	VI	
4	III	III	IV	VI	
5	IV	IV	IV	VI	
6	V	V	V	VI	
7	VI	VI	VI	VI	
>7	Category C operation				

Risikobwertung in der speziellen Kategorie

SORA- Specific Operation Risk Assessment

LOW RISK (SAIL I / II):

- ★ Anforderungen aus Operational Safety Objectives (OSOs)
- ▼ STS oder PDRA

MEDIUM RISK (SAIL III):

- ★ Anforderungen aus Operational Safety Objectives (OSOs)
- **▼ UAS Design: Deklaration inkl. Evidenzen bewertet durch** NAA.

MEDIUM RISK (SAIL IV):

- **▼ Design-Validierung durch EASA**:
 - Design Verification Report (DVR) oder (R)TC, gemäß Part 21, initial airworthiness (748/2012)
 - * Anwendbarer Bauchvorschrift: SC light-UAS medium risk

HIGH RISK (SAIL V / VI):

- ** Anforderungen aus Operational Safety Objectives (OSOs)
- ★ Antrag auf (R)TC erforderlich gemäß Part 21, initial airworthiness (748/2012)
- ★ Anwendbarer Bauchvorschrift: SC light-UAS high risk

Überblick Technische Anforderungen der speziellen Kategorie

Mitigations:

- Mitigation M2 (medium Robustheit)
- Taktische Mitigierung

MOC Light-UAS.2512-01

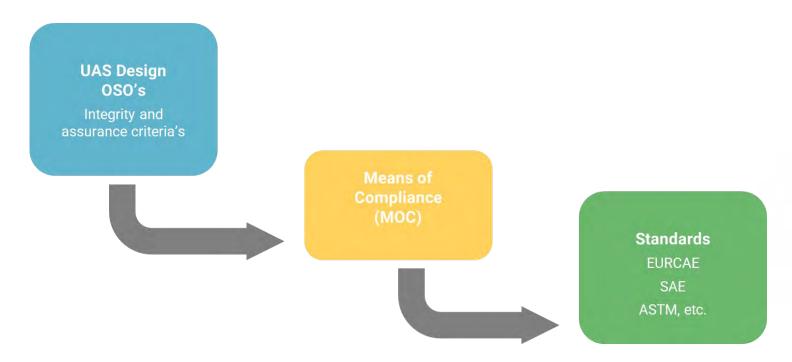
The state of the s

Enhanced Containment

Flugabbruchsystem (FTS)

MOC Light-UAS.2511-01

Design OSOs:


- Specification of materials (OSO#02)
- Maintenance (OSO#03)
- Safety and reliability (OSO#5)
- > C2 Link (OSO#06)
- ➤ AFM (OSO#08)
- Automatic protection of the flight envelope from human error (OSO#18)
- Safe recovery from human errors (OSO#19)
- Crew Interface / HMI (OSO#20)
- Adverse environmental conditions (OSO#24)

UAS Design OSO's und Nachweismethoden für SAIL III

- - **Integrity**: Kriterien zur Erhöhung der Sicherheit des Betriebes (Sicherheitsgewinn)
 - **Assurance**: Wie die Integrity Kriterien nachgewiesen werden können (Evidenzen)

Erfüllung der Anforderungen

* Nachweis über die Means of Compliance (MoC)

MDeklarationsformular

- Umfang der Deklaration
- UAS-Konfiguration
- Referenz zu Evidenzen

Evidenzen

Declaration form to MoC OSO#24

DECLARATION OF COMPLIANCE IN ACCORDANCE WITH SAIL III MOC TO SORA OSO#24

neert model name)

Hereby, I. [Insert name of the accountable manager of UAS' designer), accountable manager of the company (insert name of the company) declare under my sole responsibility that the UAS (insert UAS model name), designed by the [Insert UAS model name), designed by the with hardware and software configuration as defined by documents (insert documents numbers and version): is compliant with OSO#24 and such compliance has been determined applying the EASA SAIL III MoC to OSO#24, issue 1

I moreover declare that the requirements of the MOC have been reviewed and that its provisions have been complied with. In particular:

- ☐ The envelope of the environmental conditions within which the UAS should be operated have been identified as indicated by the MoC, as well as all further applicable limitations;
- ☐ The information of the above point has been reported in the flight manual / manufacturer instructions.
- □ The testing approach(es) to demonstrate the permitted envelope of the environmental conditions has been selected among laboratory tests, flight tests, ground tests or a combination thereof, as per chapters 3.1.9.2 and 3.3 of the MoC.

Evidence

The following supporting evidence has been developed in accordance with the MoC, and will be made available should it be requested by the competent authority for oversight purposes:

Document description [relevant section of the MoC is indicated where applicable]	Document name (including chapter/subchapter)	Document version
Envelope of environmental conditions for safe operation and summary table [3; Annex II]		
DO-160G environmental qualification form [3.1; Annex I] (if applicable)		
Test reports summarizing the laboratory test [Annex I] (if applicable)		

Update Fernpilotenkompetenznachweise

- ▶ Verlängerung A1/A3 und A2 Kompetenznachweise
 - Ab Q4 Verlängerung der RP-Lizenzen möglich
 - 5 Jahre Gültigkeit
 - Infos werden nach Abstimmung mit EASA publiziert

STS Fernpilotenkompetenzen:

- Theorieprüfung:
 - Multiple-Choice Fragen
 - Bei A2 Kompetenznachweis Besitzer: Verkürzter Prüfungsmodus
 - Positive Absolvierung ab 75% Gesamtpunktzahl
- Praktische Flugerfahrung und Bewertung

Vorfall Super Scooper (USA) – MAC DJI

- * Jänner 2025 LA wildfire
- * Canadair CL-215 "Super Scooper"
- * NOTAM für Gebiet von FAA publiziert
 - No Drone Flyzone
- * Mid-Air-Collision mit einem UAS (<249g)
- * Reparaturen und damit verbundene Unterbrechung des Einsatzes
- * Ähnlicher Vorfall bei **Hochwassereinsatz NÖ** berichtet (Black Hawk Hubschrauber)
- NOTAMs (Homebriefing)

www.austrocontrol.at

dronespace@austrocontrol.at www.dronespace.at

Austro Control GmbH Schnirchgasse 17 1030 Vienna